View on GitHub
PyMsBayes
A multi-processing Python wrapper and API for approximate-Bayesian phylgeographical inference
Download this project as a .zip file
Download this project as a tar.gz file
Navigation
index
next
|
previous
|
Home
|
Install
|
Documentation
|
Previous topic
3. Installation
Next topic
4.1. Background
This Page
Show Source
Quick search
Enter search terms or a module, class or function name.
4. PyMsBayes Tutorials
ΒΆ
4.1. Background
4.1.1. Comparative divergence models
4.1.2. Bayesian divergence-model choice
4.1.3. Approximate-
likelihood
Bayesian computation
4.1.4. Prior on divergence times
4.1.5. Prior on divergence models
4.1.6. Re-sorting the taxa during the ABC algorithm
4.2. The Configuration File
4.2.1. The Preamble
4.2.2. The Sample Table
4.3. Selecting Priors
4.3.1. An introduction to the gamma probability distribution
4.3.2. Important priors for the dpp-msbayes model
4.4. Getting the exampe data
4.5. A Simple Empirical Analysis
4.5.1. The data files
4.5.2. The primary analysis program
dmc.py
4.5.3. Plotting the results
4.5.4. Summarzing results about divergence-time scenarios
4.6. An Empirical Analysis under Multiple Models
4.6.1. The output
4.6.2. Output from a longer analysis
4.6.3. Summarzing results about divergence-time scenarios
4.7. A Simulation-based Validation Analysis
4.7.1. Background
4.7.2. The example configs for simulated datasets
4.7.3. Running the simulation-based analysis
4.7.4. The output
4.7.5. Summarizing the results
4.7.6. CV accuracy plots
4.7.7. Histograms of the estimated number of divergence events
4.7.8. Histograms of the support for the single divergence model
4.8. A key to the output of model parameters and associated statstics
4.8.1. The parameters
4.8.2. The statistics
Navigation
index
next
|
previous
|
Home
|
Install
|
Documentation
|